If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=-4.9t^2+20t+10
We move all terms to the left:
t-(-4.9t^2+20t+10)=0
We get rid of parentheses
4.9t^2-20t+t-10=0
We add all the numbers together, and all the variables
4.9t^2-19t-10=0
a = 4.9; b = -19; c = -10;
Δ = b2-4ac
Δ = -192-4·4.9·(-10)
Δ = 557
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{557}}{2*4.9}=\frac{19-\sqrt{557}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{557}}{2*4.9}=\frac{19+\sqrt{557}}{9.8} $
| 9+r=20 | | -2y+6(4y-9)=-3+5(5-y) | | 10a-3=2(4a+510a) | | -19+x=x+15 | | (3m+2)=(m-1) | | (x-8)^2-144=0 | | 2(4-9)+5m=6 | | 3w-12=7w-16 | | 13+6(x-3)=25 | | 3x^-21=0 | | 2(4-9)+5(4)=6+m | | 5^3x-4=5^x | | 6t+5/6t-5=3t+5/3t-7 | | 5^3x-4=25^x | | 3+30x=15x9 | | (x^2-81)/(x^2+10x)=0 | | 2/3x+6=1/2x1/4+x | | -5(y+5)=-3y-9 | | -5y-1=-4y-6 | | 4/7x=3x | | 54=-3x+40 | | 11^-x+5=13^6x | | 4a-65+2a+10+a-10=180 | | x-3)-2(x+6)=-5 | | 5x-1x-2=10 | | 4x÷6=54 | | 0.13x+0.03(70000-x)=6000 | | 3a+3a-50+4a+10=180 | | 4t+2/6t-7=2t+5/3t-5 | | 10(x+9)=9(x-9)+x | | |6y-3|/3+5=12 | | -5−3c=-8c |